Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Acta Agriculturae Zhejiangensis ; 34(3):457-463, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-20240064

ABSTRACT

To establish a method for simultaneous detection of porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3), specific primers and TaqMan probes were designed after sequence alignment according to the specific sequences of PCV2 Cap gene and PCV3 Cap gene on GenBank. By optimizing the reaction conditions, a duplex fluorescence quantitative PCR detection method for simultaneous detection of porcine circovirus type 2 and 3 was established, and the specificity, sensitivity, and reproducibility were tested. Specificity test results showed that in addition to the positive test results for PCV2 and PCV3, tests for PRRSV, CSFV, PPV, PRV, PEDV, and TGEV were all negative with no cross-reaction, indicating its good specificity. Sensitivity test results showed that the minimum detection limit for detection of PCV2 and PCV3 can both reach 10 copies.L-1, indicating its high sensitivity. The coefficient of variation within and between groups of this method was less than 2%, indicating its good stability. A total of 181 pork and whole blood samples collected from Zhejiang Province were tested using the detection method established in this article and the standard common fluorescent PCR detection method. The results showed that the positive rate of PCV2 was 50.83% (92/181), the positive rate of PCV3 was 37.57% (68/181), and the co-infection rate of PCV2 and PCV3 was 12.15% (22/181). The above detection results of ordinary fluorescent PCR were 50.28% (91/181), 36.46% (66/181), and the co-infection rate was 11.60% (21/181). The coincidence rates of the two methods for PCV2 and PCV3 can reach 98.91% and 97.06%, and the coincidence rate for PCV2 and PCV3 mixed infection were 95.45%. In summary, the duplex fluorescence quantitative PCR detection method established in this experiment can distinguish PCV2 and PCV3 rapidly, which can be used for pathogen detection and epidemiological investigation.

2.
Acta Veterinaria et Zootechnica Sinica ; 54(1):281-292, 2023.
Article in Chinese | EMBASE | ID: covidwho-2234619

ABSTRACT

The aim of this paper was to prepare specific monoclonal antibody (mAb) against African swine fever virus (ASFV) p54 protein. The p54 protein was expressed in Escherichia coli expression system and used as the antigen in mAb production. The spleen cells from the immunized BALB/c mice were fused with myeloma cells SP2/0. To screen the positive hybridoma cells, the purified p54 protein was used as envelope antigen for indirect ELISA. After four times' subcloning, the supernatant of hybridoma cells were used to identify mAb subtype, ascites were prepared via in vivo induction method in mice and then the mAb was purified. The titer of the mAb was detected by indirect ELISA, and the specificity of the mAb was identified by cross reactivity assay, IFA and Western blot. According to the predicted secondary structure of p54 protein, using the stepwise truncation method identified the epitope region of mAbs, and labeled the region in tertiary structure of p54 protein. Results were as follows: six hybridoma cells secreting p54 monoclonal antibody were successfully screened and named 28G12-1, 31G7-1, 31G7-2, 35F10-1, 35F10-2, 38D3-1, respectively. The heavy chains of 28G12-1, 31G7-1, and 31G7-2 were IgG2a type, the heavy chains of 35F10-1, 35F10-2, 38D3-1 were IgG1 type, light chains were all kappa chains. The lowest titer of mAb was 1:25 600, and having no cross reaction with PRRSV, PRV, PEDV, PPV, SADS-CoV, PCV2, the specificity was strong. All six monoclonal antibodies could recognize the 127-146 aa on carboxyl end. In this study, ASFV p54 protein and p54 monoclonal antibody were successfully obtained, and the epitopes of six mAbs were identified, these experimental data laid a foundation for the functional research of p54 protein and the study of ASFV epitope vaccine. Copyright © 2023 Editorial Board, Institute of Animal Science of the Chinese Academy of Agricultural Sciences. All rights reserved.

3.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(5):603-609, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-1994656

ABSTRACT

To establish a J2-KD (knockdown) cell line stably expressing interfered IFITM1 and study the effect of interference with IFITMI gene on the infection of PCV2, PRV and TGEV. Gene cloning tech- niques were used to constructed pLKO. l-EGFP-Puro-IFITMI recombinant vector, which was co-transfected into 293 FT cells with lentiviral packaging plasmids psPAXZ and pMDZ. G to produce green fluorescent protein labeled lentiviruses expression IFITMlshRNA, the viral supernatant was collected at 48 hours after post transfection. J2 cells were infected with the harvested lentiviruses, screened by puromycin and cloned via cell limited dilution. Real-time PCR identify that the cell lines with stable interference with IFITMl gene were obtained, and via MTT method verify that interference with IFITMI expression had no effect on the growth of J2 cells, the successfully constructed J2 stable cell line interfere with IFITMl expression was named as JZ-KD. PRV, PCV2 and TGEV infected J2-KD cells, respectively. Using real-time fluorescence quantitative PCR detect virus replication. The results showed that J2-KD cell line was successfully generated with interfered IFITMl expression;the copy number of PCV2 and TGEV were in- creased, while PRV was decreased in J'Z-KD cell. Indicating that the interference of IFITMI gene expression markedly inhibited the replication of PRV while promoted that. of TGEV and PCV2, providing a basis for further study on the function of porcine IFITMI protein and elucidates its antiviral mechanism.

4.
Acta Agriculturae Jiangxi ; 34(2):160-165, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1964892

ABSTRACT

In this study, 650 tissue samples which were collected from 16 pig farms in Hubei Province, were used to detect porcine circovirus (PCV) and Porcine epidemic diarrhea virus (PEDV). The results showed that the positive rates of PCV1, PCV2, PCV3 and PEDV single infection were 1.08%, 4.15%, 2.46% and 6.46%, respectively. In the double infections, PEDV+PCV2 had the highest positive rate of 3.54%, followed by PCV2+PCV3, with a positive rate of 1.54%. In multiple infections, PEDV+PCV2+PCV3 had the highest positive rate of 2.00%. The results indicated that the positive rates of PEDV and PCV were decreased compared with the previous studies, but the prevalence of PEDV and PCV was still wide in Hubei Province, and most of which were co-infection.

5.
J Virol ; 96(13): e0014322, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1879115

ABSTRACT

Differentiation of infected from vaccinated hosts (DIVH) is a critical step in virus eradication programs. DIVH-compatible vaccines, however, take years to develop, and are therefore unavailable for fighting the sudden outbreaks that typically drive pandemics. Here, we establish a protocol for the swift and efficient development of DIVH assays, and show that this approach is compatible with any type of vaccines. Using porcine circovirus 2 (PCV2) as the experimental model, the first step is to use Immunoglobin G (IgG) sero-dynamics (IsD) curves to aid epitope discovery (IsDAED): PCV2 Cap peptides were categorized into three types: null interaction, nonspecific interaction (NSI), and specific interaction (SI). We subsequently compared IsDAED approach and traditional approach, and demonstrated identifying SI peptides and excluding NSI peptides supports efficient diagnostic kit development, specifically using a protein-peptide hybrid microarray (PPHM). IsDAED directed the design of a DIVH protocol for three types of PCV2 vaccines (while using a single PPHM). Finally, the DIVH protocol successfully differentiated infected pigs from vaccinated pigs at five farms. This IsDAED approach is almost certainly extendable to other viruses and host species. IMPORTANCE Sudden outbreaks of pandemics caused by virus, such as SARS-CoV-2, has been determined as a public health emergency of international concern. However, the development of a DIVH-compatible vaccine is time-consuming and full of uncertainty, which is unsuitable for an emergent situation like the ongoing COVID-19 pandemic. Along with the development and public health implementation of new vaccines to prevent human diseases, e.g., human papillomavirus vaccines for cervical cancer; enterovirus 71 vaccines for hand, foot, and mouth disease; and most recently SARS-CoV-2, there is an increasing demand for DIVH. Here, we use the IsDAED approach to confirm SI peptides and to exclude NSI peptides, finally to direct the design of a DIVH protocol. It is plausible that our IsDAED approach is applicable for other infectious disease.


Subject(s)
Antibodies, Viral , Circoviridae Infections , Epitopes , Immunoglobulin G , Viral Vaccines , Animals , Antibodies, Viral/blood , COVID-19 , Circoviridae Infections/immunology , Circovirus , Disease Models, Animal , Epitopes/analysis , Epitopes/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Peptides , SARS-CoV-2 , Swine , Swine Diseases/immunology , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL